
PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

The GROMOS Software for (Bio)Molecular
Simulation

Volume 5: Program Library Manual

August 24, 2012

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

Contents

Chapter 1. Introduction 5-1
1.1. Nomenclature of GROMOS files 5-1
1.2. Common Arguments in GROMOS++ 5-1
1.3. Atom, Property and Vector Specifiers in GROMOS++ 5-2
1.3.1. Atom Specifiers 5-2
1.3.2. Vector Specifiers 5-4
1.3.3. Property Specifiers 5-4

Chapter 2. Setup of Simulations (Preprocessing) 5-7
2.1. bin box (GROMOS++ Program) 5-7
2.2. build box (GROMOS++ Program) 5-8
2.3. check box (GROMOS++ Program) 5-9
2.4. check top (GROMOS++ Program) 5-10
2.5. com top (GROMOS++ Program) 5-12
2.6. con top (GROMOS++ Program) 5-13
2.7. copy box (GROMOS++ Program) 5-14
2.8. cry (GROMOS++ Program) 5-15
2.9. duplicate (GROMOS++ Program) 5-16
2.10. explode (GROMOS++ Program) 5-17
2.11. gca (GROMOS++ Program) 5-18
2.12. gch (GROMOS++ Program) 5-19
2.13. ion (GROMOS++ Program) 5-21
2.14. make pt top (GROMOS++ Program) 5-22
2.15. make sasa top (GROMOS++ Program) 5-23
2.16. make top (GROMOS++ Program) 5-24
2.17. mk script (GROMOS++ Program) 5-25
2.18. pdb2g96 (GROMOS++ Program) 5-28
2.19. pert top (GROMOS++ Program) 5-29
2.20. prep xray (GROMOS++ Program) 5-30
2.21. prep xray le (GROMOS++ Program) 5-31
2.22. pt top (GROMOS++ Program) 5-32
2.23. ran box (GROMOS++ Program) 5-33
2.24. ran solvation (GROMOS++ Program) 5-34
2.25. red top (GROMOS++ Program) 5-35
2.26. sim box (GROMOS++ Program) 5-36

Chapter 3. Minimizers and Simulators 5-37
3.1. PROMD (fortran code) 5-38
3.2. md (MD++ Program) 5-40
3.3. repex mpi (MD++ Program) 5-41
3.4. eds 2box (MD++ Program) 5-42

Chapter 4. Analysis of Trajectories (Postprocessing) 5-43
4.1. bilayer dist (GROMOS++ Program) 5-43
4.2. bilayer oparam (GROMOS++ Program) 5-44
4.3. cluster (GROMOS++ Program) 5-45
4.4. cog (GROMOS++ Program) 5-46
4.5. cry rms (GROMOS++ Program) 5-47

5-I

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

4.6. dfmult (GROMOS++ Program) 5-48
4.7. dg ener (GROMOS++ Program) 5-49
4.8. diffus (GROMOS++ Program) 5-50
4.9. dipole (GROMOS++ Program) 5-51
4.10. ditrans (GROMOS++ Program) 5-52
4.11. dssp (GROMOS++ Program) 5-53
4.12. eds update 1 (GROMOS++ Program) 5-54
4.13. eds update 2 (GROMOS++ Program) 5-55
4.14. edyn (GROMOS++ Program) 5-56
4.15. ene ana (GROMOS++ Program) 5-57
4.16. ener (GROMOS++ Program) 5-58
4.17. epath (GROMOS++ Program) 5-60
4.18. eps field (GROMOS++ Program) 5-61
4.19. epsilon (GROMOS++ Program) 5-62
4.20. espmap (GROMOS++ Program) 5-63
4.21. filter (GROMOS++ Program) 5-64
4.22. follow (GROMOS++ Program) 5-65
4.23. gathtraj (GROMOS++ Program) 5-66
4.24. hbond (GROMOS++ Program) 5-67
4.25. int ener (GROMOS++ Program) 5-68
4.26. iondens (GROMOS++ Program) 5-69
4.27. jepot (GROMOS++ Program) 5-70
4.28. jval (GROMOS++ Program) 5-71
4.29. m widom (GROMOS++ Program) 5-72
4.30. matrix overlap (GROMOS++ Program) 5-73
4.31. mdf (GROMOS++ Program) 5-74
4.32. nhoparam (GROMOS++ Program) 5-75
4.33. noe (GROMOS++ Program) 5-76
4.34. post noe (GROMOS++ Program) 5-77
4.35. postcluster (GROMOS++ Program) 5-78
4.36. prep eds (GROMOS++ Program) 5-79
4.37. prep noe (GROMOS++ Program) 5-80
4.38. r factor (GROMOS++ Program) 5-81
4.39. r real factor (GROMOS++ Program) 5-82
4.40. rdf (GROMOS++ Program) 5-83
4.41. rep ana (GROMOS++ Program) 5-84
4.42. rep reweight (GROMOS++ Program) 5-85
4.43. reweight (GROMOS++ Program) 5-86
4.44. rgyr (GROMOS++ Program) 5-87
4.45. rmsd (GROMOS++ Program) 5-88
4.46. rmsdmat (GROMOS++ Program) 5-89
4.47. rmsf (GROMOS++ Program) 5-90
4.48. sasa (GROMOS++ Program) 5-91
4.49. sasa hasel (GROMOS++ Program) 5-92
4.50. solute entropy (GROMOS++ Program) 5-93
4.51. structure factor (GROMOS++ Program) 5-94
4.52. tcf (GROMOS++ Program) 5-95
4.53. tser (GROMOS++ Program) 5-96
4.54. tstrip (GROMOS++ Program) 5-97
4.55. visco (GROMOS++ Program) 5-98
4.56. xrayts (GROMOS++ Program) 5-99

Chapter 5. Miscellaneous 5-101
5.1. atominfo (GROMOS++ Program) 5-101
5.2. close pair (GROMOS++ Program) 5-102
5.3. frameout (GROMOS++ Program) 5-103
5.4. inbox (GROMOS++ Program) 5-104

5-II

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

5.5. pairlist (GROMOS++ Program) 5-105
5.6. shake analysis (GROMOS++ Program) 5-106
5.7. unify box (GROMOS++ Program) 5-107
5.8. rot rel (GROMOS++ Program) 5-108
5.9. VMD plugin (GROMOS++ Program) 5-109
5.10. xray map (GROMOS++ Program) 5-110

Bibliography 5-i

5-III

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

CHAPTER 1

Introduction

GROMOS, consisting of MD++ and GROMOS++, is a collection of programs developed to prepare,
run and analyse a MD simulation. Most programs belong to GROMOS++ and may be used to se tup a
simulation or analyse the trajectories of a simulation, while MD++ is used to run the simulation.

This volume gives an overview over all the programs, listed either in Chap. 2 (setup of simulations), Chap. 3
(minimizers and simulators) and Chap. 4 (analysis of trajectories) or Chap. 5 with a program description
together with required and optional input arguments as well as standard and additional outputs. The focus
is on the use of the programs and not on the source code behind. The reader who wishes to change or add
the source code of GROMOS is referred to Chap. 6-1 where an outline of the source code including libraries
as well as predefined classes and namespaces is given in more datail.

Most common arguments used and needed by a majority of GROMOS programs are explained more
extensively in Sec. 1.2 of this volume. The diverse use of (atom, property and vector) specifiers, a powerful
tool to specify a group of atoms, properties as distances, angles and many others, is described in Secs. 1.3,
accompanied by multiple examples.

1.1. Nomenclature of GROMOS files

GROMOS is very generous concerning the names and endings of input and output files. It leaves the user
absolute freedom. Nevertheless, we strongly recommend a consistent pattern of file name endings which helps
keeping the overview over different file types. A possible naming (recommendations) is given in Chap. 4-13.

1.2. Common Arguments in GROMOS++

Several arguments appear in many GROMOS++ programs and their explanation is given here.

1. @topo
Molecular topology files are read from the @topo argument. The file format of a topology is described
in Sec. 4-3.2.

2. @pbc arg1 [arg2] [arg3]
Periodic boundary type and gathering parameters are read from @pbc. The first argument is the
boundary type which may take the following values:
v vacuum, non-periodic boundary conditions
r rectangular periodic boundary conditions
c triclinic periodic boundary conditions
t truncated octahedral periodic boundary conditions

The second and third arguments determine the gathering method. The available gathering methods
(arg2) are:

5-1

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

nog or 0 do not gather

glist or 1 (default) gathering, based on a list of atoms

gtime or 2 gathering based on previous frame

gref or 3 gathering based on a reference structure

gltime or 4 gather first frame based on a list, next frames based on

previous frame

grtime or 5 gather first frame based on a reference structure, next

frames based on previous frame

gbond or 6 gathering based on bond connectivity

cog or 7 gathering with respect to the centre of geometry of

the all atoms of the first molecule in the system
The third argument is used for specific gathering methods. If glist or gltime is used, then

arg3 should have the form:
list <AtomsList>

If gref or grtime is used, then arg3 should have the form:
refg <ReferenceStructure>

3. @outformat
Some GROMOS++ programs can write the output coordinates in different formats. The following
formats are supported:
cnf Configuration format containing POSITION blocks (extension .cnf).
trc Coordinate trajectory format containing POSITIONRED blocks (extension .trc).
por Position restraints specification format (extension .por).
pdb Protein Data Bank (PDB) format. An additional factor can be given to convert the length unit

to Å, default 10.0.
vmdam VMD’s ,,Amber Coordinates” format. An additional factor can be given to convert the length

unit to Å, default 10.0.

1.3. Atom, Property and Vector Specifiers in GROMOS++

Analysis of the trajectories of a MD simulation is, besides the correct setup, of importance to a computa-
tional scientist. The more specific the questions, the more flexible the programs which answer those questions
have to be. GROMOS++ makes use of three specifiers to keep its flexibility: atom specifiers, property
specifiers and vector specifiers. Each of them is used as an input parameter (a string with a well defined
format) for some GROMOS++ programs. Note that some shells may modify the brackets or other special
characters. Therefore, quotes should be used when using atom specifiers as a command line argument.

This section introduces the reader to each of the three specifiers giving an overview of the different
possibilities to use them.

1.3.1. Atom Specifiers. Atom specifiers define a general way to access specific atoms of a system. It
is even possible to access atoms which are not there (virtual atoms) or common properties (e.g. the center
of geometry or center of mass) of multiple atoms. The atom specifier can be defined using four different
formats:

- Molecules and Atoms:
<mol>[-<mol>]:<atom>[-<atom>]

- Residues:
<mol>[-<mol>]:res(<residue>:<atom>[,<atom>...])

- Virtual Atoms:
va(<type>, <atomspec>)

- File:
file(<filename>)

<mol> is the molecule number and <atom> either the atom number or the atom name. Instead of the atom
or molecule number one can also specify all solute or solvent molecules or atoms using a or s, respectively.
The solvent is only accessible if there is a topology and a coordinate file given. It is not possible to access
the solvent from a topology only, since GROMOS does not know how many solvent molecules the system

5-2

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

consists of. The <type> argument defines the virtual atom type the specifier accesses. The following types
are known in GROMOS++:

0: explicit/real atom
1: aliphatic CH1 group
2: aromatic CH1 group
3: non-stereospecific aliphatic CH2 group (pseudo atom)
4: stereospecific aliphatic CH2 group
5: single CH3 group (pseudo atom)
6: non-stereospecific CH3 groups (isopropyl; pseudo atom)
7: non-stereospecific CH3 groups (tert-butyl; pseudo atom)
-1: centre of geometry
-2: centre of mass

<atomspec> is a complete atom specifier of one of the four formats above and <filename> is the name of
the file (output of the atominfo program) listing the atoms to consider.

Multiple atom specifiers must be separated by a semicolon while multiple molecules or atoms within the
same atom specifier are separated by a comma.

Examples:

atoms 3 an 7 to 12 of molecule 2:

2:3,7-12

all atoms of molecule 1:

1:a

all CA, N or C atoms of all molecules

a:CA,N,C

atom 1 of residue 3 and 5 of molecule 1:

1:res(3,5:1)

all C, N or CA atoms of residues named SER or THR of molecule 1:

1:res(SER,THR:C,N,CA)

the centre of mass of molecule 1:

va(-2,1:a)

the alpha hydrogen of residue 1 in a protein:

va(1,1:res(1:N,CA,CB,C))

all CA atoms of the first molecule, accessed by a file from atominfo:

$ atominfo @topo ex.topo @atomspec 1:CA > ca.spec

file(ca.spec)

In addition, there are the two keywords not and minus to exclude some atoms from an atom specifier. Note
that the atoms specified with the keyword not are never included in the resulting atom specifier while the
keyword minus allows to add the removed atoms within the same specifier later on again.

Examples:

all atoms of the first molecule but without the second residue:

1:a minus(1:res(2:a))

all atoms of the first molecule but without any C atoms:

1:a minus(1:res(2:a)) 1:res(2:C)

5-3

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

Finally there are programs that syntactically require an atom specifier although one does not want to specify
any atoms for the computation (e.g. to disable rotational fits). For this purpose there is the keyword no. It
can be used to specify an empty set of atoms.

Example:
no atoms:

no

1.3.2. Vector Specifiers. Vector Specifiers may be used in a property specifier (see Sec. 1.3.3) to
calculate some well defined properties using the help of vectors. There are three different formats to specify
a vector:

- cart(<x>,<y>,<z>)

- polar(<r>,<α>,<β>)

- atom(<atomspec>)

with <x>, <y> and <z> being the three coordinates of a Cartesian 3D vector, <r> the length (norm) of a
vector x, <α> and <β> the polar angles in degree,

x = (r cos(α) cos(β), r sin(α),−r cos(α) sin(β)) , (1.1)

and <atomspec> is an atom specifier (see Sec. 1.3.1).

Examples:

the vector vector (2, 5, 1):

cart(2,5,1)

the vector (0, 2.5, 0)

polar(2.5,45.0,90.0)

1.3.3. Property Specifiers. Like the other two specifiers (see Sec. 1.3.1 and Sec. 1.3.2), property
specifiers are used as an argument for some analysis programs of GROMOS++. They are used to specify
the property one is interested in. The general format of a property specifier is:

- <type>%<arg1>[%<arg2>...]

with <type> defining the specific property and <arg1> the argument (an atom or vector specifier, compare
Sec. 1.3.1 and Sec. 1.3.2, respectively) needed to calculate this property. It is clear that dependent on the
property type the number of required arguments may change.

The following is a list of all property types implemented in GROMOS++:

d: distance
a: angle
t: torsion

tp: periodic torsion
ct: cross torsion
hb: hydrogen bond
st: stacking
o: order

op: order parameter
pr: pseudo rotation
pa: pucker amplitude

expr: expression property

Multiple calculations of the same property at different positions of the molecule or system are available
via substitutions (see example 4 where it is shown to calculate multiple distances within the same molecule).

Some examples for all properties but the expr property follow. The latter is a bit more complex and will
be discussed after the examples at the end of Sec. 1.3.1.

Examples:

5-4

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

the distance between atoms 1 and 2 of molecule 1:

d%1:1,2

the distance between the first atoms of molecule 1 and 2:

d%1:1;2:1

the distance between the centres of mass of molecules 1 and 2:

d%va(com,1:a);va(com,2:a)

the distances between the H and N atoms of residues 3 to 5 of molecule 1 (making use substitution):

d%1:res((x):H,N)|x=3-5

the angle defined by atoms 1, 2 and 3 of molecule 1:

a%1:1-3

the angle between the virtual alpha hydrogen of residue 1 and the atoms CA and C of residue 1 of molecule
1:

a%va(1,1:res(1:N,CA,CB,C));1:res(1:CA,C)

the torsion defined by the atoms H, N, CA and CB of residue 2 of molecule 1:

t%1:res(2:H,N,CA,CB)

the cross torsion defined by the atoms 2, 3, 4 and 5 as well as 3, 4, 5 and 6 of molecule 1:

t%1:1,2,3,4%1:3,4,5,6

the hyrdogen bond between the H atom of residue 3 and the O atom of residue 5 of the first molecule:

hb%1:res(3:N,H);1:res(5:O)

the stacking between the HISB ring of residue 44 of molecule 1 and and the pyrimidine ring of residue 2 of
of molecule 2:

st%1:res(44:CG,CE1,CE2,CD1,CD2,CZ)%2:res(1:N1,C5,N3,C6,C2)

the order between the N-H bond of residue 2 and the z-axis:

o%atom(1:res(2:H,N))%cart(0,0,1)

the order parameter between the x-axis and the vector defined by atoms 1 and 2 of the first molecule:

op%cart(1,0,0)%atom(1:1,2)

the pseudo rotations of the atoms in the furanose ring of residues 1 to 6 of molecule 1:

pr%1:res((x):C1*,C2*,C3*,C4*,O4*)|x=1-6

the pucker amplitude of the atoms in the furanose ring of residue 1 of molecule 1:

pa%1:res(1:C1*,C2*,C3*,C4*,O4*)

The expression property allows the evaluation of a multitude of expressions over a trajectory. The
general form is:

- expr%<f1>(<args1>) <op> <f2>(<args2>)

where <op> is one of the following arithmethic or logical operators:

+ addition
- subtraction
* multiplication
/ division
! not

== equals
!= does not equal
> bigger than
< smaller than

>= bigger or equal than
<= smaller or equal than
&& logical and
|| logical or

5-5

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

<f1> and <f2> are functions followed by their arguments. Depending on the type of function, the arguments
are different. There are the following funcitons:

- functions where the argument is a scalar:
sin the sine function
cos the cosine function
tan the tangens function
asin the inverse sine function
acos the inverse cosine function
atan the inverse tangens function
exp the exponential function
ln the logarithm

abs the absolute value
sqrt the square root
- functions where the argument is a vector:
abs the norm of a vector
abs2 the squared norm of a vector
- functions which need two vectors:
dot the dot product of two vectors

cross the cross product of two vectors
ni the nearest image of vector 1 with respect to vector 2

Examples:

calculates the dot product between position of atom(1:1) and the vector (0,0,1); that is the z-component of
the position of the first atom of the first molecule:

expr%dot(atom(1:1),cart(0,0,1))

calculates the distance between the first atom of the first and second molecule. First, the nearest image of
atom(2:1) according to atom(1:1) is calculated. Second, this vector is substracted from atom(1:1) and the
absolute value is taken:
expr%abs(atom(1:1) - ni(atom(2:1), atom(1:1)))

returns 1 if the the discussed distance is below 1.0 nm and 0 if not:
expr%abs(atom(1:1) - ni(atom(2:1), atom(1:1)))<1.0

calculates the order of the vector defined by atoms 1:1,2 and the z-axis. First, the cosine is calculated by the
dot product of the vectors and division by their lengths (the second vector has length 1). Then the angle is
calculated and converted to degrees:

expr%acos(dot(atom(1:1,2),cart(0,0,1)) / abs(atom(1:1,2)))*(180/3.1415)

5-6

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

CHAPTER 2

Setup of Simulations (Preprocessing)

2.1. bin box (GROMOS++ Program)

Program Description:

When simulating a molecular liquid, a starting configuration for the solvent molecules has to be generated.
To generate a starting configuration for the simulation of a binary mixture, the program bin box can be
used. A cubic box is filled with solvent molecules by randomly distributing them on an evenly spaced grid
such that the total density of the box and the mole fractions of the solvent components match the specified
values. Note that the program ran box (see Vol. 5 Sec. 2.23) can be used alternatively, which generates a
starting configuration for the simulation of mixtures consisting of an unlimited number of components, in
which the molecules are oriented randomly.

Required Input Arguments

@topo1 〈molecular topology file for a single molecule of the type of mixture
component 1〉

@pos1 〈input coordinate file for a single molecule of the type of mixture com-
ponent 1〉

@topo2 〈molecular topology file for a single molecule of the type of mixture
component 2〉

@pos2 〈input coordinate file for a single molecule of the type of mixture com-
ponent 2〉

@nsm 〈total number of molecules per dimension〉

@densit 〈density of the binary mixture (kg/m3)〉

@fraction 〈mole fraction of mixture component 1〉

Optional Input Arguments

none

Standard Output

coordinate file with nsm3 molecules in a cubic box at the specified density.

Additional Output
none

5-7

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

2.2. build box (GROMOS++ Program)

Program Description:

When simulating a molecular liquid, a starting configuration for the solvent molecules has to be gener-
ated. Program build box generates a cubic box filled with identical solvent molecules which are put on an
evenly spaced grid such that the density of the box matches the specified value. Note that to generate a
starting configuration for the simulation of a binary mixture, the program bin box can be used (see Sec. 5-
2.1). Alternatively, program ran box (see Sec. 5-2.23) generates a starting configuration for the simulation
of mixtures consisting of an unlimited number of components, in which the molecules are oriented randomly.

Required Input Arguments

@topo 〈molecular topology file (see Sec. 1.2) for a single molecule〉

@pos 〈input coordinate file for a single molecule〉

@nsm 〈number of molecules per dimension〉

@dens 〈density of the liquid (kg/m3)〉

Optional Input Arguments

none

Standard Output

coordinate file with nsm3 solvent molecules in a cubic box at the specified density

Additional Output
none

5-8

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

2.3. check box (GROMOS++ Program)

Program Description:

To check for the distances between atoms and periodic copies of the other atoms in the system, program
check box can be used. check box calculates and writes out the minimum distance between any atom in the
central box of the system and any atom in the periodic copies (rectangular box and truncated octahedron
are supported).

Required Input Arguments

@topo 〈molecular topology file (see Sec. 1.2) of the system〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈input coordinate (trajectory) file〉

Optional Input Arguments

@atoms 〈atoms to include in calculation (default: all solute)〉

Standard Output

time series of the shortest distance between periodic copies of the selected atoms,
followed by the overall minimum over the simulation

Additional Output
none

5-9

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

2.4. check top (GROMOS++ Program)

Program Description:

Making a correct topology is one of the most important requirements for doing a successful simulation.
check top helps to remove often made errors from a topology in three ways. First, it runs some standard
tests on the molecular topology and warns if something unexpected is observed in the topology. Second, it
can calculate all bonded interaction energies for a given set of coordinates to determine the compatibility
of the topology with the coordinates. Third, it can check for consistency in the force-field parameters by
comparing it to a specified set of building blocks and force-field parameters.

In the first phase, check top tests that:

1. there is maximally one bond defined between any pair of atoms
2. no atom appears twice in the definition of one given bond
3. only bond types are used that are defined in the topology
4. a bond angle is defined for the atoms involved in any two bonds sharing one atom
5. there is maximally one bond angle defined for a given set of three atoms
6. atoms involved in a bond angle definition are bound to the central atom
7. no atom appears twice in the definition of one given bond angle
8. only bond angle types are used that are defined in the topology
9. an improper dihedral angle is defined centered on every atom that is bound to exactly three other

atoms
10. there is maximum one improper dihedral angle defined for any set of four atoms
11. atoms involved in an improper dihedral angle definition are bound
12. no atom appears twice in the definition of one given improper dihedral angle
13. only improper dihedral types are used that are defined in the topology
14. atoms involved in a proper dihedral angle are sequentially bound
15. no atom appears twice in the definition of one given dihedral angle
16. only dihedral angle types are used that are defined in the topology
17. only atom types are used that are defined in the topology
18. the sum of partial charges on atoms in one charge group is an integer value
19. excluded atoms are 1,2- or 1,3- or 1,4-neighbours
20. atoms only have atoms with a higher sequence number in their exclusion list
21. 1,2- or 1,3-neighbours are excluded
22. 1,4-exclusions are separated by 3 bonds (1,4-neighbours)
23. atoms only have atoms with a higher sequence number in their 1,4-exclusion list
24. 1,4-neighbours are in the exclusion list or in the 1,4-exclusion list
25. no exclusions or 1,4-exclusions are defined for the last atom in the topology
26. the charge group code of the last atom in the topology is 1

Additionally, for atoms that are 1,4 neighbours but are listed as excluded atoms a warning is printed. This
is usually only the case if an aromatic group is involved. Note that a topology that passes all these tests is
by no means guaranteed to be error-free. Conversely, some of these tests are merely meant as warnings for
the user which may point at errors in the majority of cases. In some cases, the user may very well want to
use a topology that does not fulfill all tests.

In the second phase, potential energies of all bonds, bond angles, improper dihedral angles and proper
dihedral angles are calculated and written out. Abnormally large energies or deviations from ideal values
may indicate an error in the topology, or an inconsistent set of coordinates with the topology. See program
shake analysis (see Sec. 5-5.6) for a similar check on the non-bonded interaction energies.

In the third phase check top can compare the topology with other building blocks in a specified molecular
topology building block file and the corresponding interaction function parameter file. It checks if in the
molecular topology building block file we observe one of the following:

1. other atoms with the same name and the same integer atom code (IAC)
2. other atoms with the specified IAC
3. other atoms with the same IAC and mass
4. other atoms with the same IAC and charge
5. other bonds between atoms of the same IAC with the same bond type
6. other bond angles between atoms of the same IAC with the same bond-angle type

5-10

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

7. other improper dihedral angles between atoms of the same IAC with the same improper dihedral
type

8. other dihedral angles between atoms of the same IAC with the same dihedral-angle type

In cases where the parameters specified in the program are not observed anywhere else, or when they are
not the most common parameter, the program prints out a list of possible alternatives. Again, we stress that
check top only points at possible inconsistencies and does not necessarily indicate errors in your topology.

Required Input Arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

Optional Input Arguments

@coord 〈coordinate file for energy calculation〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@build 〈building block file for consistency check〉

@param 〈parameter file for consistency check〉

Standard Output

list of inconsistencies

Additional Output
none

5-11

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

2.5. com top (GROMOS++ Program)

Program Description:

To generate molecular topology files for the use in simulations of e.g. (macro) molecular complexes, or
mixtures containing several solutes and/or (co)solvents, it is usually convenient to merge existing molecular
topology files. Program com top combines multiple topologies into one new topology.

The user has to specify which molecular topologies are to be merged, and from which file the force-field
parameters and the solvent have to be taken. The resulting molecular topology file is written out to the
standard output.

The program can also be used for topology file format conversion. The argument @inG96 converts
GROMOS96 topologies to the current format. On the other hand @outG96 converts topologies in the
current format to GROMOS96 format.

Required Input Arguments

@topo 〈molecular topology files (see Sec. 1.2)〉

@param 〈index number of molecular topology file to take parameters from〉

@solv 〈index number of molecular topology file to take solvent from〉

Optional Input Arguments

@inG96 〈reads in a topology file in GROMOS96 format〉

@outG96 〈the output topology is written in the GROMOS96 format〉

Standard Output

combined topology file

Additional Output
none

5-12

